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Finite-Size Effects in Random Energy 
Models and in the Problem of Polymers 
in a Random Medium 

J. Cook 1'2 and B. Derrida 1 

Received November 16, 1990 

By the use of traveling wave equations we calculate the finite-size corrections to 
the free energy of random energy models in their low-temperature phases and 
in the neighborhood of the transition temperature. We find that although the 
extensive part of the free energy does not show any critical behavior when the 
temperature approaches its transition value, the finite*size corrections signal the 
transition by becoming singular. We obtain a scaling form for these finite-size 
corrections valid in the limit N--* oe and T ~ T c. By considering a generalized 
random energy model in the limit of a very large number of steps, we obtain 
results for the finite-size corrections in the problem of a polymer in a random 
medium. 

KEY WORDS: Spin-glass; finite-size effects; directed polymers; traveling 
w a v e s .  

1. I N T R O D U C T I O N  

There are several examples in the field of disordered systems in which 
phase t ransi t ions exist a l though there is no singular behavior  in the exten- 
sive par t  of the free energy. For  example, in the high-temperature  phase of 

the Sherr ington Kirkpat r ick  model  (1) the extensive part  of the free energy 
is k n o w n  and  it does not  possess any singularity at the phase transit ion.  

It is necessary to examine the finite-size corrections to the free energy in 
the high- temperature  phase to observe singular behavior  signaling the 
transit ion.  (2) Other  examples of disordered systems in which the branches 
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of the free energy have no singularity at the phase transition include 
the random energy model (REM) (3 s) in its two phases, the generalized 
random energy model (9 16/ in all its phases, and the problem of directed 
polymers in a random medium in the high-temperature phase (17'~8) in all 
dimensions strictly larger than 2 + 1. In all of these examples one expects 
the finite-size corrections to become singular at To, as a signal of the phase 
transition. (3,19) 

In the present paper we calculate the finite-size corrections of the 
generalized random energy model (GREM) of an arbitrary number of steps 
p. We show that these finite-size corrections become singular at the phase 
transition and we obtain the scaling form of these corrections near the 
transition temperature Tc (in the limit N-~ oe and T ~  To). By taking the 
limit of a very large number of steps p in the GREM, we make the connec- 
tion with the problem of directed polymers in the mean field case {2~ and 
we recover the corrections expected from the analogy with traveling 
waves. (2~ Lastly, we examine how the energy of a typical GREM con- 
figuration is distributed among its p steps. We obtain the result that, even 
for the GREM of a finite number of steps, the excess energy of the first 
steps of the GREM is comparable with what is expected for the directed 
polymer problem. (22) 

The paper is arranged as follows. In Section 2 we define the GREM to 
be studied (1~ and discuss how this model acts as an interpolation between 
the REM and the mean field limit of directed polymers in a random 
medium. (2~ We point out the relationship between these problems and 
traveling wave equations, noticing that the finite-size corrections to the free 
energy of the GREM correspond to the dependence of the asymptotic 
behavior of a traveling wave equation upon the initial conditions. (2~) 
The finite-size corrections of the free energy of the p-step GREM below 
the transition temperature are derived in Section 3. Section 4 contains the 
derivation of the corresponding results in the neighborhood of the 
transition temperature, yielding a scaling form in the limit N ~  oo and 
T ~  To. In Section 5 we consider the GREM when the number of steps p 
becomes very large. In this limit we recover the logarithmic corrections 
expected for the mean field directed polymer from the traveling wave 
approach. Finally, in Section 6 we calculate how the energy of a typical 
GREM configuration is distributed among its steps, using the expression 
for the finite-size corrections of Section 3. 

The details of the calculations of Sections 3 and 4 require one to 
calculate the location of a front which is the solution of a traveling wave 
equation. This is discussed in Appendix A. The large-p behavior of two 
multiple integrals which we need in Sections 5 and 6 to treat the directed 
polymer problem is studied in Appendix B. 
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2. THE REM,  G R E M ,  A N D  THE M E A N  FIELD T H E O R Y  OF 
P O L Y M E R S  IN A R A N D O M  M E D I U M  

In this section we shall define the models which will be studied in the 
remainder of this paper, namely the REM, the GREM, and a mean field 
version of the problem of directed polymers in a random medium. We shall 
show how these problems can be written in the form of traveling wave 
equations (2~ and discuss their relationships. 

2.1. The p -S tep  G R E M  

2.1.1.  D e f i n i t i o n  o f  t h e  GREM.  The generalized random energy 
model (GREM) was introduced (9'1~ as a simplified spin-glass model for 
which the possible configurations of a system are organized according to 
an ultrametric structure (a tree structure). The model can be solved exactly 
for an arbitrary choice of the parameters {ai}, {c~i} which define the model 
and so far it seems to be the only model for which it has been proved that 
the replica ansatz with a broken replica symmetry (23'24) gives the exact 
expression of the free energy. 

In the GREM of p steps the possible configurations of the system are 
represented by the endpoints of a tree of p steps (see Fig. 1). The model is 
defined by two sets of numbers {e~> 1}, {a i>0  } for 1 <~i<~p. We shall 
choose 

P P 

ai = a and IF] ei = c~ (1) 
i = 1  i = 1  

The total number of branches at level i is (cq ~ 2  ~i) N. For each bond of 
the tree structure at level i, one chooses a random energy e~ ~') according to 

-qM9 

EIj E9 

Fig. 1. The configurations of the GREM are the endpoints of a tree of p levels. 
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a probability distribution P~(e). To keep the discussion simple, we shall 
take this to be 

Pi(e) = (Nrcai) ~/2 exp(-aZ/Nai)  (2) 

By definition of the model, the configurations are identified with the 
endpoints of the tree, and the energy E~ of a configuration # is given by 

P 

Z (3) 
i = i  

where the sum runs over all bonds connecting the configuration # to the 
top of the tree. The partition function Zp for a GREM of p steps is then 
defined as 

Zp = ~ exp( - E~/T) (4) 
/z 

where T is the temperature. 
For  p = 1, the model reduces to the random energy model (REM) in 

which there are no correlations between the energies of different configura- 
tions. Therefore the system consists of c~ N configurations. The energy E ,  of 
each configuration # is chosen at random according to a distribution ~(E),  

N(E) = (TzNa) 1/2 e x p ( - E 2 / N a )  (5) 

and the energies E .  and Ev of two different configurations are uncorrelated, 

E )=7 aeXp - Na ] (6) 

For p > 1, the distribution of the energy of each individual configura- 
tion is still given by (5), but the energies of the configurations are 
correlated. Two configurations # and v which belong to the same branch 
up to level i -  1 and then bifurcate at level i have two energies E .  and E~ 
which are correlated, 

1 [ E~+E~-2qE~Ev] 
~'v(Eu' E~)-TzNa(1- q2) 1/2exp - Na(1 __q2) ] 

where 

(7) 

- a j  (8) 
q:q~,v=a j=l 
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So, the correlation between the energies of the two configurations depends 
on a parameter q which measures their distance on the tree. This parameter 
q can be thought of as the overlap between the two configurations. 

The number of configurations v which have an overlap q~.v given by 
(8) with a given configuration g is 

(aiai+ 1''" ap) N -  1 (9) 

It will be 2.1.2. The  Exact  Expression of the  Free Energy. 
convenient to define a set of parameters A~, 

A~= 2 (l~ ail ~/2 (10) 
\ a~ / 

The GREM can be solved exactly for an arbitrary choice of the {c~} 
and of the {a~}. Here, for simplicity, we shall only consider cases of the 
GREM in which A1 ~< A2 ~< .. .  ~< Ap. In this case it has been shown (~~ that 
for T<~ 1/Ap one has a low-temperature frozen phase in which 

p 

lim T(l~ ~, (a~loga,) j/2 (11) 
N ~ c o  

" *  i 1 

and above a temperature 1/A~, one has a high-temperature phase where 

a 
lira T ( l ~  T i o g a  (12) 

N---~ co N +4-~ 

We use ( . . . )  to denote an average over disorder. If A1 =A2 . . . . .  Ap, 
then these are the only two phases that exist. However, in general, for 
At< A2 < ... < Ap, one finds p transition temperatures 1/Ai and one has 
p -  1 intermediate phases. 

As a result of the tree structure of the GREM, one can write a recur- 
sion relation involving the partition function Zp of a GREM of p steps, 
with {a/} = {al, a2,..., ap} and {ai} = {a~, a2,..., ap}, and the partition 
function Zp_l  of a ( p - 1 ) - s t e p  GREM, with {ai} = {c~2, a3,..., ap} and 

{ai} = { a 2 ,  a 3 . . . . .  ap}, 
~f 

Zp= ~ Z(p') , exp(-a~/T)  (13) 
i = 1  

where ei is the energy of the ith first-step bond and the 7(o  are a x U p _  1 

independent ( p - 1 ) - s t e p  GREM partition functions. This follows because 
all configurations of the p-step GREM must use one of the a x first-step 
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bonds and can then follow any configuration on one of the remaining c~ N 
(p - 1)-step GREMs.  

2.1.3.  T h e  Traveling Wave Approach. The partition function 
Zp is a function of all the energies el ~) of the tree. So it is a random variable 
and the meaningful object to consider is its probability distribution or a 
generating function. It turns out that one can define a generating function 
Gp(x) by 

Gp(x) -- (exp(  - Zp e- x/r) ) (14) 

which satisfies a very simple recursion relation 

Gp(x)= (Ngal)I/2G p ~(x+e)exPkNalJ j (15) 

Equation (15) is obtained by replacing Zp by its expression (13) in Gp(x) 
and by using the fact that the ei and the 7 (i) are independent random ~p--1 
variables. Notice that the temperature T does not appear in the recursion 
(15). So the whole temperature dependence comes from the initial condi- 
tion 

Go(x) = e x p ( -  e .~-/r) (16) 

which follows from the fact that Z 0 = 1. 
Equation (15) is a traveling wave equation, very similar to the equa- 

tion that we shall derive for the mean field directed polymer problem. (2~ It 
reduces the calculation of any thermodynamic quantity to a finite number 
of iterations (p times) of the traveling wave equation (15) with the initial 
condition (16). 

2.2. The M e a n  Field D i rected  Po lymer  Problem 

2.2.1.  D e f i n i t i o n .  A mean field version of the problem of directed 
polymers in a random medium can be obtained by formulating the 
problem on a branch of a tree (see Fig. 2). (2o) One has a tree structure with 
coordination number K +  1 ( K =  2 in Fig. 2) and to each bond b of the tree 
one assigns a random energy eb according to a given probability distribu- 
tion p(e). One then considers all directed polymers, or walks, of length L 
emanating from the root 0 and running down the tree. One such walk is 
shown in bold in Fig. 2. The energy Ew of such a walk W is defined to be 
the sum of the energies on the bonds visited by I41, 

Ew= ~ ~b (17) 
b~W 
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Fig. 2. A configuration of a directed polymer on a tree (K= 2). 

511 

and the partition function ZL i~ then 

ZL = ~ exp( -- Ew/T) 
w 

where the sum runs over all directed walks of length L. 
For  a Gaussian distribution of the bond energies 

p(e) = ~ exp( - e  2) 

the system undergoes a phase transition at a temperature 

(18) 

(19) 

1 
Tc = zt;"log K) 1/2 (20) 

and the free energies of the low- and the high-temperature phases are given 
by 

l i r a - T  ( l ~  ( logK) 1/2 for T < T  c (21) 
L ~ c o  L 

(log ZL ) 1 
lim - T - - T l o g  K - - -  for T >  Tc (22) 

L-~o~ L 4T 

2.2.2.  Analogy wi th  the  GREM.  By comparing (11) and (12) 
with (21) and (22), we see that the expression for the free energy is very 
similar in the directed polymer problem and in the GREM. The analogy 
between the two problems can best be understood by considering the 
correlations between the energies of two configurations. 

822/63/3-4-6 
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For  the directed polymer problem the probability distribution ~ ( E )  of 
the energy Ew of a walk W of length L is given, when p(e) is a Gaussian 
(19), by 

~'(E) = (TrL) 1/2 e x p ( - E 2 / L )  (23) 

whereas the probability Nw, w,(Ew, Ew,) that the two walks W and W' 
have energies Ew and Eve, is given by 

1 (E2w+E2w,-2qEwEw,.) 
~w,w'(Ew'Ew')=rcL(l_q2)l/2exp L ( l _ q  2) J (24) 

where q is the fraction of their length that the walks W and W' have in 
common. 

The number of walks W' which have an overlap q with a given walk 
W is 

K L(1 q~- 1 (25) 

We see, from (5), (7), (9), and (23)-(25), that the correlations between 
the energies of the configurations in the GREM and in the directed 
polymer problem have very similar expressions. The only difference is that 
the overlap q is continuous in the directed polymer problem, whereas it is 
discrete in the GREM. If one considers a GREM where all the a~ and all 
the cq are equal, 

L L L 
a = -- '  = - - '  log log N' ai pN' c~i = -~  K (26) 

one sees that for p = L ,  the GREM and the directed polymer problem 
become identical. So by varying p one can interpolate between the REM 
and the directed polymer problem. 

2.2.3. Travel ing W a v e  Approach.  Let us now consider how the 
mean field directed polymer problem can be cast in the form of a traveling 
wave equation. At the first step all the walks of length L + 1 must pass 
through one of the K bonds bl, b2,..., bx (see Fig. 2). The walks can then 
take any directed path of length L on one of the K independent branches 
with roots at the points i. This gives a recursion for ZL: 

K 

ZL+~ = ~ Z~ ) e x p ( - e i / T )  (27) 
i - : 1  

where ~i is the energy associated with the bond bi and Zo = 1. This recur- 
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sign is analogous to (13) for the GREM. So, as before, it is convenient to 
introduce the generating function GL(X), 

GL(X ) = (exp( --ZL e-x/T) ) (28) 

In terms of this generating function, (27) becomes (2~ 

G r + l ( x ) =  dep(e) Gr(x+e) (29) 

with the initial condition 

Go(x) = e x p ( - e  x/T) (30) 

SO this problem can be reduced to a traveling wave equation very similar 
to that for the GREM [-compare (29) and (30) with (15) and (16)]. 

2.2.4. A n a l o g y  w i t h  R e a c t i o n - D i f f u s i o n  Equations.  In the 
limit of large L, the solutions of (29) become traveling waves of the form (2~ 

G L(x) = W(x - cL + d(L ) ) (31) 

where d(L)/L ~ 0 as L ~ oe, The velocity of the wavefront c depends on 
the initial condition (30). Above the transition temperature Tc, the velocity 
c(T) is given by 

c ( r ) ;  r log K de p(e) e for T> Tc (32) 

whereas below Tc the velocity is given by the minimal velocity 

c ( T ) = T c l o g [ K f d e p ( e ) e  ~/Tc] for T~<Tc (33) 

where Tc is the solution of 

d@TlogIKf  dep(e) e-~/T ] = 0  (34) 
T=Tc 

From the definition of the generating function (28), one can see that this 
velocity c(T) corresponds to the limit of T(log ZL)/L for large L in the 
polymer problem, since the values of x where Gp(X) is noticeably different 
from 0 and 1 are of order of T log Ztyp~c,~. For a Gaussian choice of p(e) 
one recovers the expressions for T c and the free energy, (20)-(22). 

It has been observed (2~ that the discrete-time traveling wave equation 
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(29) with the initial condition (30) is closely related to the Kolmogorov- 
Petrovsky-Piscounov (KPP) equation, 

Og(x, t) _ 1 02g(x, t) + gZ(x, t ) -  g(x, t) (35) 
•t 2 OX 2 

The KPP equation also admits traveling wave solutions and the approach 
of the system toward these asymptotic solutions has been studied by 
Bramson. (21) If the initial condition g(x, 0) is an increasing function of x 
with g(x, 0) ~ 0 as x ~ -oe  and g(x, 0) --* 1 as x ~ +m,  then the velocity 
c~ and the shape of the traveling wave w~ depend on the asymptotic shape 
of the initial condition for x ~  oo. If the initial condition g(x, 0) is 
characterized by an exponential decay 

1 -- g(x, 0) ~ e-~X for x ~ m (36) 

then Bramson was able to show that  (21'25'26) 

g(x, t) = w t~(x - m~(t)) (37) 

where for large t 

1(,) 
m~(t)=~ f l+~  t+O(1)  if f l<xf2  (38) 

=x/2 t -2-3 /Z log t+O(1)  if f l--x/2 (39) 

=x/2t-3 .2-3/alogt+O(1)  if f l > ~  (40) 

By analogy, one might expect the traveling wave equation (29) with 
initial condition (30) to have similar corrections. As the traveling wave 
velocity c corresponds to T < log ZL > / L  for the polymer, one might there- 
fore suppose that the finite-size corrections for the polymer will be of the 
form 

( l o g Z L ) = L l o g I K f  dep(e)e-~/r]+O(1), T> Tc (41) 

= L l o g I K f  dep(e)e ~/rcl-~logL+O(1),  T = T  c (42) 

= T L l O g  Kf dep(e)e_~,/r,. 3L - ~ - f  log L + O(1), r < L  (43) 

where Tc is the solution of (34). The extensive terms in (41)-(43) were 
obtained in ref. 20. In this paper we shall obtain these finite-size correc- 
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tions, by calculating the finite-size corrections for the GREM for an 
arbitrary number of steps p and then taking the limit of large p. 

3. F IN ITE-S IZE  C O R R E C T I O N S  TO THE FREE E N E R G Y  OF T H E  
p - S T E P  G R E M  IN T H E  L O W - T E M P E R A T U R E  P H A S E  

We shall now derive the finite-size corrections to (log Zp) for the low- 
temperature phase of the p-step GREM up to terms of order one. To do 
this we shall use the recursion (15), obtained for the generating function 
Gp(x), defined in (14). As we are only interested in calculating corrections 
up to order one, we shall replace (15) by 

ex {  44, 
This simplified equation can be understood by noticing that the only range 
of values x where Gp(x) is not exponentially small in N is when the integral 
in the bracket on the rhs of (15) is very close to one. So, in that range of 
values of x, one can replace (15) by (44) by neglecting exponentially small 
factors. 

By iterating (44) p times one can obtain the generating function for a 
p-step GREM, Gp(X), in terms of the initial condition Go(x) given by (16). 
Once one knows Gp(x) one can find the average free energy using an 
integral representation. If one makes the substitution 

t=exp(-x/T) (45) 

one can use the integral representation of (log Z) ,  

(l~ 

to show that 

(46) 

(log Z) = f? dt (e '-Gp(- Tlog (47) 

If T =  0, it is simpler to extract the desired information from the generating 
function, as one can then obtain the probability distribution of the ground- 
state energy Uos(E) by 

r/os (E) = dG(x)  
d x  x=E 

(48) 



516 Cook and Derrida 

The iteration of (15), or even of its simplified version (44), is not easy 
to do. The expression for Gp(x) becomes more and more complicated as p 
increases. However, by using the fact that N is large, one can greatly 
simplify the calculation and iterate Gp(x) a n  arbitrary number of times. 
The details of the calculations which lead to the expression for Gp a r e  

presented in Appendix A. Here, let us just discuss the results. 
As already discussed in Section 2, the free energy of the GREM 

depends on the choice of the parameters {ai} and {c~i}. Here we shall limit 
our discussion to two cases [see (10) for the definition of the Ai]: the first 
case for which the freezing at each level of the GREM occurs at a different 
temperature (the gradual freezing A~< A2 < ..- < Ap) and the second case 
for which all the levels of the GREM freeze at the same temperature 
(the simultaneous freezing A1 ~- A2 ~- . . .  ~- Ap). 

3 . 1 .  T h e  G r a d u a l  F r e e z i n g  c a s e :  A 1 < A 2 <  �9 ~ �9 <Ap<I/T 
In this case the system undergoes p phase transitions and the results 

we are going to discuss are valid in the low-temperature phase. One can 
show (see Appendix A) that in the range of values of x such that 

x = i=1 N(ai  log O~i) 1/2  - -  /=1 log(4NTr log ~i) + ~pp log F(1 - -  TAp) 

+ ,~1= log F 1 - Ai+l  + y (49) 

where y is of order o n e ,  Gp(x) is given by 

Gp(x) = exp [- - exp( - A ly) ]  (50) 

So, in the region where Gp(x) is noticeably different from zero or one, 
Gp(x) always has the same form for all p, up to a translation, which is 
given by (49). 

From (47), (49), and (50), one can easily get an expression for 
(log Zp): 

1 ~ log(4Nrclog c~i) 
N (ai log ~i) ~/2 - 2---T i= 1 Ai ( l ~  i=l 

1 
+ - ~  log[r(1 - Ap T)] 

Ai 1 
1 P ~ t ~ , l ~  1 A---~+I)I (1-TA-~I) F ' ( 1 ) ( 5 1 )  + ~ iL~ - + 
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So the leading finite-size correction ~ to log Z is of order - l o g  N. We see 
that as T ~  A j  ~ (the lowest transition temperature), the third term in (51) 
signals the transition by becoming singular. Also, we see that if one tries to 
relax the condition A I < A 2 < - - .  <Ap by making Ai+I-A ~ small, the 
term of order one diverges. 

When p = 1 one can check that (51) reduces to 

( log Z 1 ) = 
N(a log ~)1/2 

T 
2~log(4NTc log c0 + (1 - - ~ )  F '(1)  

+ - T l o g  F 1 T 

where we have used the fact that 
1/2 

(53) 

for the REM. This is exactly the result obtained in ref. 3 (in the case a = 1 
and ~ = 2). 

The explicit form (50) allows one to obtain other information about 
the distribution of log Z. For example, the variance of the free energy is 

((logZp)2)-(logZp)2=( 1 ) (A,T)2 1 [ / '"(1)  -- F ' (1)  2] 

= ( ( A  1 -1 )  7~2 7ir 2 (54) 

for the p-step GREM, whereas in the REM (i.e., p = 1), it becomes 

( ( l o g Z l ) 2 )  - ( l o g Z l ) 2 =  ~ -  1 1--2 (55) 

3.2. The Simultaneous Freezing Case: A1 ~ A 2 ~ -  �9 �9 �9 ~ - A o < I / T  

In the last section we have seen that if all the A i become roughly 
equal, the expression (51) for the finite-size correction to the free energy 
becomes singular. As explained in Appendix A, if 

A i --= A -}- z i  N - l ~ 2  (56) 

where each zi is of order one, Gp(X) is modified and becomes 

Gp(x) = exp [ - exp( - Ay) ] (57) 



518 Cook and Derrida 

where y is of order one and is now defined by 

x= ~ N(ailog c~i)l/2-2~ log(4rcNlog c~p) + l  log T ( 1 -  TA) 
i ~ l  

1 
+ ~ log J1(P - 1) + y (58) 

where the integral J l (P-1)  is given by 

J l ( p - 1 ) = ~  d~,~ oo d~z .co d~,p 2 
t al;  Jo 

• (~a,----~,) -~/~ - -  a~ ~ 

a 3 a p _  1 ctp 

(Zp-Zp_l)Op 1] (59) ~ (Z2~ZI)  ~1 ~ (Z3~Z2) ~2 

So, as in Section 3.1, the shape of Gp(X) is given by the simple expression 
(57), independent of p up to a translation given by (58). Then (log Zp)  
can be found using the integral representation of (47), to give, correct to 
order one, 

N p 1 
.= 2A T log(4rc (log Zp) = ~ ~ (ai log ~i)1/2 _ _  Xlog Ctp) 

+~--~logF(1-Ar)+ logJ~(p-l)+ I-~--T F'(1) 

(6O) 

Since Tc ~ - 1/A, we see that the leading correction is -(Tc/2T)logN, 
identical to that for the random energy model (52). As the shape of Gp(X) 
is always the same, one expects the fluctuations to keep the same form (55) 
as before. The case where the zi are all equal will be of particular interest, 
because it is this structure that one expects to yield the answer for the 
mean field directed polymer problem as p --* oo. This limit of (60) will be 
considered in Section 5. 
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4. F I N I T E - S I Z E  C O R R E C T I O N S  TO T H E  FREE E N E R G Y  OF T H E  
p - S T E P  G R E M  NEAR Tc: T H E  S C A L I N G  F O R M  

In this section we shall obtain, correct to terms of order one, the finite- 
size corrections to ( log Zp) for the p-step GREM in the neighborhood of 
the phase transition to the high-temperature phase. We shall therefore 
be interested in cases where lAp - 1/TJ is small. As in the previous section, 
the finite-size corrections will be derived by iterating the recursion (44) 
p times and then using the integral relation (47). We shall consider two 
cases separately as in Section 3: the gradual freezing case 
A~<A2< . . .  <Ap ~ 1/Tand the simultaneous freezing case A~-A2~ ... 
Ap ~- 1/T. 

4.1. The  gradua l  f reez ing  case: A 1 < A a <  �9 �9 �9 < A  o-~ 1/T 

Here one is interested in a p-step GREM with p transition tem- 
peratures, T1 > T2 > ... > Tp, with the temperature in the neighborhood of 
the lowest of these transitions. One finds (see Appendix A) that Gp(x) still 
has the form of (50), but that now 

711 ( + Y~ ~log/"  1-Ai+l A-- 7 

(Nap / 1 \2"1 •  ~erfc {{Nap)'/2(2/T-A')}]+y (61) 

where erfc (x) is defined as 

erfc(x)=--~fTexp(-y2)dy (62) 

One sees that (61) is very to similar the translation of (49) in the previous 
section, the terms resulting from iterating the recursion over steps p -  1 to 
1 remaining the same and only the term from the recursion from step p to 
p - 1 being altered. It is simple to check that the limit x /N  ( l /T-  Ap)  ---+ oo 
of (61) is identical to the limit T--> Ap ~ of (49), so that the two expressions 
for Gp(x)  below and near the transition are consistent with each other. 
Using the integral representation of (47), one can now show, from (61), 
that 
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N ~ (ailog~i)l/2 1 p&Xlog(4N~logcq) 
<log Zp > = ---T i= 1-- -- ~ ill= A i 

1 - A i  1 

1 fNap / 1 \2) 

xerfc{(Nap)l/2(1/T-Ap)}]2 (63) 

The leading correction to (log Z )  remains of order - l o g  N at, and in the 
neighborhood of, the transition when p > 1. One can see that the scaling 
function [the last term in (63)] is a function of (Nap) ~/2 (1/T-Ap). One 
therefore has to compare the deviation from the transition temperature 
1/Ap with N -1/2 to determine the behavior of the finite-size corrections to 
the free energy. One can check that, in the limit ~ ( 1 / T - A p ) - - ,  o% the 
scaling functions agrees with the result of (51) in the limit 1/T-Ap-,  O. 

The result for the REM can be obtained by setting p = 1 in (63) and 
by using the expression (53) for To. Doing this, one obtains 

N 
(log Z1 ) = -~ (a log a)1/2 

d U ( 1  1~2~ x/-N 1 1 
+ -~ log  [~exp [ ~ - \ - ~ - ~ j  j erfc {--~-- ( - ~ - ~ ) } 1  (64) 

[the term F'(1) is not present because it would be of order 1/x/N ]. We see 
that for the REM, in the neighborhood of T~., if T -  Tc ~- N 1/2, the finite- 
size correction to the free energy is no longer proportional to log N, but 
becomes of order 1. One can also show that for the REM, (64) interpolates 
between the known results for T < Tc and x/3 T C > T > Tc in ref. 3. 

4.2. The  S imul taneous  Freezing Case: A 1  ~ - A z  ~ " " �9 ~ - A p  ~_ l I T  

Now we shall turn to the case that will be of interest to us later when 
we wish to obtain results valid for the mean field directed polymer. We 
have 

Ai=A+zi N-1/2 with zi=O(1) for l<<.i<~p (65) 

1/T=A+zp.~N 1/2 with zp+~=O(1) (66) 
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As in the case of Section 4.1, the fact that ( l / T - A )  is small means that the 
behavior related to carrying out the recursion from step p of the GREM to 
step p -  1 is altered. Using the methods discussed in Appendix A, one now 
obtains the result that 

Gp(x ) = exp [ - exp( - Ay) ] (67) 

where now y is related to x by 

k 12 1 x =  N(ai log cti) / +-~logJ2(p)+y (68) 
i=l 

with 

j 2 ( p ) = f ~  d@ 1 oo d@ 2 ~ d@p 
(7ral) 1/2 fo (~cap) ~/2 

x e x p [  (@P-@P 1)2 (@p l--@p 2)2.. .  (@2--@1) 2 
ap ap_ l a2 

- -  @2/s - -  (Zp +1 - -  Zp) @p -- (Zp -- Zp - 1  ) @p--1  . . . .  (Z2 - -  -71 ) 0 1  ] 

(69) 

Using the integral representation of (47), one accordingly finds that 

N p 
( log Zp)  = -~ ~ (a i log eta)1/2 + log J2(P) (70) 

i=i 

One must now examine the behavior of J2(P) to determine the leading 
correction to ( log Zp). The above expression again provides one with a 
scaling form for the finite-size corrections to the free energy. One finds that 
the scaling function is a function of x / N  (1/T-Ap).  Again one can check 
that the limit (zp+l -Zp) x /N  ~ o0 of (70) gives the same result as the limit 
T ~ A  -~ in (60). We shall return to a consideration of these finite-size 
corrections when p is large in the next section. 

5. F I N I T E - S I Z E  C O R R E C T I O N S  FOR D I R E C T E D  P O L Y M E R S  IN 
A R A N D O M  M E D I U M  

In Section 2 we discussed the relationship between the p-step GREM 
and the mean field limit of directed polymers in a random medium If one 
increases the number p of steps of the GREM, keeping the branching ratios 
and the energy distributions given by (26), the correlations between 
energies of different configurations become more and more like those of the 
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mean field directed polymer problem. In this section, therefore, we shall 
consider the results obtained in the previous two sections in the limit that 
p becomes large (in particular p = L) with the ai and c~ given by (26) 

L L L 
a = --" - " log cq = log K 

N' ai pN' -~  

to obtain answers that should be valid for the mean field directed polymer 
problem. 

5.1. The  L o w - T e m p e r a t u r e  Phase: T <  T c 

In the low-temperature phase, we can use the results obtained for the 
GREM in Section 3.2. Since all the ai and ~i are equal [see (26)], the A i 
are given by 

1 1 
Ai=A-2(logK)I/2 T--~ (71) 

and the results (59)-(60) have to be used with the ai and ei given by (26) 
and in the case where all the z~ = 0. Therefore 

L 1/2 Tc (4zc L log K ) + _ ~  log F (1 ~_~) (log Zp) = ~ (log K) - ~-~ log 

+ - ~  log ~71(p- 1) + (1 - - ~ )  F'(1 ) (72) 

where the integral ] I ( P - 1 )  given by (59) becomes [all z~= 0 because of 
(71)] 

I~ d$l ~ d02 ~ dOp_ t 
,o 7f0 , f0 ] l ( p -  1) = 

x e x p [ - O 2 _ ~ -  ( @ _ 1 -  @_2) 2 . . . .  ( 0 2 -  $1 )2 -  $~] (73) 

This integral is discussed in Appendix B. It can be related to the proba- 
bility that the displacement of a Brownian particle, starting at 0 at time 0 
and returning to 0 at timerp, remains positive at all positive integer times 
(1 <~t~p-1), One can show (Appendix B) that for large p the integral 
J ~ ( p - 1 )  behaves as 

C~ (74) .71( p - 1) ~-p3/2 
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where C1 lies between two bounds (0.318 <p3/2.71( p -  1)<2.36) and 
appears numerically to tend to a limit 

C1 = 1.00 _+ 0.05 (75) 

as p becomes large. Substituting (74) in (72) for large p, one sees that for 
T<T,,, 

L K) l /2_~Tlog(L)_ .~logp+TlogC1 (log Zp)  = ~ (log 3To Tc 

Tc ( 1 - ~ )  (76) ~log(4rclogK)+(1-~)F'(1)+--~logF 

We see that as long as L-~ oe with fixed p, the finite-size correction is 
--(TJ2T)logL as in the REM (52). On the contrary, if p ~ o v  when 
L--+ o% keeping the ratio Lip fixed (for example, Lip = 1 as discussed in 
Section 2) we get a finite-size correction - ( 3 T S 2 T  ) log L as in the case of 
the KPP equation (40) and (43). 

5.2.  T h e  T r a n s i t i o n  T e m p e r a t u r e :  T =  T c 

To obtain the finite-size corrections at T =  Tc, we can use the results 
of Section 4.2. The Ai are still given by (7l) (implying that all the zi = 0 for 
l<~i<<.p) and since we are considering the case T=Tc one also has 
Zp + 1 = 0. Therefore the results of Section 4.2 become 

L 
<log Ze> = ~ (log K) '/2 + log J2(P) 

where J2(P) is given by 

, fo 

(77) 

x e x p [ -  (Op-  Op_,) 2 . . . .  ( ~ 2 -  ~ i ) 2 - ~ ]  (78) 

The integral J2(P) is discussed in Appendix B, where it is shown that for 
large p 

Y2(P) ~- ~/2 (79) 

As for the integral J l ( p - 1 ) ,  one can obtain bounds (0.318<pV2y2(p) 
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<0.977) and the numerical results indicate that for large p, C 2 is a 
constant, 

C 2 ~ 0,56 --~0.01 (80) 

This implies for large p that at T C 

L 1 
(log Zp ) = -~ (log K)1/2 _ 2 log p + log C2 (81 ) 

As for expression (76), we see that if L - ,  oo at fixed p, the finite-size 
correction is of order 1 as in the REM (64), whereas ifp ~ oo when L -~ oo 
with p/L fixed (for example, p/L= 1 to obtain the directed polymer 
problem), one recovers a correction -(Tc./2T) log L similar to the finite- 
size correction for the KPP  equation [see (42)]. 

In principle one could use (70) to study the neighborhood of To. The 
expression of the scaling form which describes the limit T-~ Tc and L ~ oo 
becomes more complicated. Let us just mention what happens: If L - ,  o9 
with fixed p, one obtains as in the REM a scaling form which depends on 
the product ~ (T C-  T) [see (64)]. On the contrary, in the case L--* oo 
with p/L fixed (p/L = 1 for the polymer problem), one finds that the scaling 
form depends on the product L(Tc- T). This result can be anticipated by 
comparing (76) and (81) and by noticing that the finite-size corrections 
become comparable when L ( T c -  T) is of order 1. 

6. THE D I S T R I B U T I O N  OF THE ENERGY A M O N G  T H E p  STEPS 
OF THE G R E M  

In this section we shall examine how the energy of a typical configura- 
tion is distributed among the p steps of a GREM, As was discussed in 
Sections 2 and 5, if one takes p to be large, one expects to obtain a result 
valid for the mean field directed polymer problem. We shall again use this 
approach here. 

It has been shown (2~ that for the mean field directed polymer problem 
in the low-temperature phase, the probability distribution of the overlap 
between two walks consists of two delta functions: one at zero overlap and 
one at an overlap one. This means that two typical walks either spend only 
a vanishing fraction of their lengths together and then split, or that they 
remain together and only split a length l from the bottom of the tree, where 
limL ~ ~ l/L= 0. This implies that the energy of a typical walk must be con- 
centrated in the first fraction of its length. Once two typical walks remain 
together for a finite fraction of their lengths, this then forces them to 
remain together to give an overlap of one, as only by following this route 
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can the anomalously large energy on the initial portion of the walk be 
balanced to give a low overall energy. From the results obtained for the 
overlaps, one can therefore conclude that the initial fraction of a typical 
walk has an excess of energy compared with the energy expected for a walk 
of that length and that this excess of energy must increase with the system 
size N. In this section we shall show, using the p-step GREM, that for 
arbitrary p, and hence presumably for the mean field directed polymer, the 
excess of energy scales as N 1/2. The same result has been suggested for the 
polymer problem on a tree. (22) 

To see how one can obtain information about energies a finite fraction 
along a path, it is useful to consider as an example a two-step GREM. 
Suppose that the energy distributions for this GREM are characterized by 
widths (Nal) 1/2 and (Na2) 1/2. Let us define a type of "partition function" 
involving two temperatures T~ and T2 by 

2 ( T * ' T 2 I = ~ e x p [ - \ - - T T  T7-2/J (82) 

where e} ~} is the energy on the ith step. With this definition one regains the 
normal partition function by choosing T =  T1 = T2, i.e., 

2(T, T) = Z2(T ) (83) 

One can obtain the average energy on a particular step of the GREM 
as a derivative with respect to l/T,: 

d log 2 ( T , ,  T 2) 
g, = - , i =  1, 2 (84) 

d(1/T,) 

where the overbar represents a thermal average. Choosing the energy 
distributions to have widths (N~j) 1/2 and (X~12) 1/2 and allowing two 
temperatures T1 and T 2 is equivalent to fixing one temperature T and 
selecting the widths to be 

(Nai)l/2 = (Na,)~/2 T__ (85) 
Ti 

Hence, one can rewrite (84) as 

dlogZ(T)d~/<~ d(1/T,~)d'~ _ T,,~ d g~ = ~ I - l o g  Z (T) ]  (86) 

Clearly this argument can be extended to allow one to determine the 
average energy of a given fraction of the length of walks for a GREM of 
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an arbitrary number of steps. Here we shall only consider the simultaneous 
freezing case of a p-step GREM with A~= A + ziN ~/2, with z~ of order 
one, in the low-temperature phase (Section 3.2). One then has that [see 
(lO)] 

x//~ ~- 2(log ~i)1/2 2(log ~i)l/2 
A A2N1/2 z i (87) 

So, the average energy of the first j steps of the GREM, (E( j ) )  (j<~ p), is 
given by 

< E ( j ) >  = A N  1/2 ~ z / ( T l o g  Zp> (88) 
i=1 

Having obtained a formula from which to derive the average energy of 
the first j steps of the p-step GREM from the average free energy, we can 
now use the results of Section 3.2 to obtain an explicit expression for 
<E(j)). For the case under consideration, we have shown that (log Zp) 
is given by (59) and (60). Taking the derivatives with respect to z~ in (59) 
and (60), one obtains, to order N 1/2, 

J Y 1 3 
( E ( j ) > = - N  ~ (a~log~)~/2+N1/2 ~ Ji(P-1)OZg J I ( p - 1 )  

i=1 i = l  

= - N  ~ (ailogo~)l/2 + Nl/2I(j' p - 1 )  (89) 
i=1 J I ( P -  1) 

where 

l(J' P - 1 ) =  fo  dt~l f 5  d~I p-1 

exp [ -- (Zp -- Zp 1 ) ~lp -- 1 • 

-(Zp , - zp_2)  ~p_2 . . . .  ( z2 - z , )  4,1 

. . . .  ( * ,  2- p-112-   -1] (90t 
a I a 2 ap_ 1 ap A 

One can therefore see that there is an excess of energy on the initial 
portion of a typical walk and that this excess increases with the system size 
as N 1/2. 

If we now take the limit of large p, with the {ai} and {~} given by 
(26), we see that we need to evaluate the integrals J~(p-  1) and I(j, p -  1) 



Finite-Size Effects in Random Energy Models 527 

in the case where al l  the zi = 0 and where all the ai are equal. Therefore, 
if in this case we denote j/p by 

)~ = j/p (91) 

we have 

['L"~I/2 7(j, p-- 1) 

where Y l ( P - l )  and I(j, p - 1 )  are defined by (73) and by 

(92) 

I(j, p - -  l ) = f o  dO~ oo dOp_j  ;fo  ;oJ 
x e x p [ - r  a . . . .  (Op 2-~9p 1 ) 2 - 0 2 _ i ]  (93) 

We already know the large-p behavior of Y~(p-1), (74)-(75). Thus, we 
only need to study the integral I(j, p -  1) for large p. It turns out that one 
can express I ( j ,p-1)  in terms of the Yl(q): For 2<<.j<~p-2, one can 
show that 

1 j p ~ l  
7(j, p - 1 ) =  ~---~ j l (0  ) J l ( p -  2) + 4 ~,/-~ i=j+L 

1 J 
+ ~ )Y~(p-i-1)  - - ~  i= iYl(i- 1 

where 

Y~(i- 1) Y , (p -  i -  1) 

(94) 

Jl(0) = 1 and yl(1) = f ~ dxe  -2x2~ 2x/21 (95) 

We shall not give a detailed derivation of (94) here. Let us mention the 
main steps which lead to it. First, it is easy to check that 

2 I ( j , p - -  1 ) - I ( j +  1 , p -  1 ) - I ( j - -  1, p -  1) 

1 
,,/~Yl(J- 1) Yl(p- j -  1) (96) 

~ 2 

So I(j, p - 1 )  can be expressed in terms of the .71 and of 7(1, p - 1 )  and 
7(2,p- 1). 

The second step is to use the symmetry (93) 

7(j, p - -  1) = I (p - - j ,  p - -  1) (97) 

822/63/3-4-7 
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7(1, p -  1) can be determined in terms of Jl-type integrals by (97) and by 
integrating (93) by parts p - 1  times. Also using (96) and (97), one can 
obtain 7(2, p - 1 ) .  Doing so, one obtains expression (94). 

So we see that the knowledge of the large-p behavior of J I ( P -  1) also 
gives the asymptotic form of I(j, p - 1), 

fo ] ](j, p- -  1 ) -  C1 )~ + 
2p ~ x3/2( ~ x) 3/2 x!/2( i ~  x) 3/~ 

_ 2C~ 21/2(1_2)1/2 (98) 
p,/; 

Therefore (92) becomes 

(E(j))  = -L)~(log K) 1/2 + 2C_~ 21/2(1 _ 2)1/2 ~ (99) 

So we obtain for the polymer problem that the excess energy of the first ,iL 
steps is proportional to L ~/2 and the coefficient is a semicircular law. 

In principle one could imagine using procedures other than (26) to 
obtain the polymer problem in the large-p limit. We tried other procedures 
where the {a~} and {log ~i} become small in a more complicated way than 
in (26). For these more complicated procedures, we did not succeed in 
calculating the leading correction to the energy and so we could not test 
whether the result given in (99) is independent of the procedure used. 

7. C O N C L U S I O N  

In the present paper we first obtained the leading finite-size corrections 
for a GREM with an arbitrary number of steps p, (51), (60). We saw that 
these finite-size corrections signal the phase transition by becoming 
singular when T-* T c. We also obtained the scaling forms (63), (70) for 
these corrections which are valid when N - ,  oc and T ~ To. By making the 
number of steps very large, we obtained the same finite-size corrections as 
those predicted from the traveling wave approach based on the study of the 
KPP  equation. Lastly, we saw that from the knowledge of the finite-size 
corrections one can calculate how the energy of a typical path is distributed 
along the path. 

A possible extension of the present work could be the study of the 
finite-size corrections in the high-temperature phase. In our approach, 
based on the traveling wave equation (44), we neglected terms exponen- 
tially small in N which are probably of the same order as the finite-size 
corrections in the high-temperature phase (at least for the REM(3)). 
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Another extension could be to calculate other quantities such as the 
magnetic susceptibility (1~ or the overlaps ~176176 to see how the finite-size 
effects affect the transition. Lastly, one could try to extend our results to 
distributions of energies more general than the Gaussian (19). We believe 
that the logarithmic corrections ( -1 /2  log L and -3Tc/2Tlog L) given in 
(42) and (43) remain valid for a large class of distributions p(e) [probably 
as long as the distribution p(e) decays faster than any exponential when 
I~1 --' oo ] .  

Although the results obtained in the present paper are limited to the 
finite-size corrections for the GREM and the mean field limit of directed 
polymers in a random medium, they might be a useful step toward a better 
understanding of two problems: the finite-size corrections in spin glasses 
and velocity selection in traveling wave problems. 

In spin glasses, at present, the replica approach developed by Parisi is 
considered to be the correct solution of the mean field spin glass. The 
numerical work (27'28~ done on the Sherrington-Kirkpatrick model to test 
this mean field theory seems to agree with the Parisi solution, but the 
absence of theoretical predictions for the finite-size corrections always 
makes the comparison difficult. Even in the case of the REM, the finite-size 
corrections, which are known, (3) have not yet been obtained by the replica 
approach. It would be very interesting to understand how the finite-size 
corrections obtained in this paper for the REM, the GREM, or the direc- 
ted polymer could be recovered using replicas. This would certainly be a 
useful step toward connecting the replica calculations and the numerical 
data have been obtained for a large variety of systems (spin glasses, neural 
networks, optimization problems, etc.) where it is always difficult to 
compare the results of the replica calculations done in the thermodynamic 
limit with those of the numerical simulations. 

Traveling wave equations and the problem of front propagation 
appear in many physical systems (29'3~ (for example, flow or instabilities). 
One often has the problem of locating a front which moves from a stable 
to an unstable region [-for the traveling wave equations (15), (29), (35) the 
stable region is where G=0,  and the unstable region corresponds to 
G = 1 ]. One knows that in general there exists a one-parameter family of 
shapes for the front, indexed by their velocity. The problem is to predict 
the velocity, the shape, and the position of the front, given the traveling 
wave equation and the initial condition. This is a difficult problem with 
very few exactly soluble examples. In the present paper, we had to study a 
traveling wave equation and, by using the fact that N was large, we were 
able to calculate the position of the front step by step (Appendix A). For 
the GREM, the low-temperature phase always corresponds to the fact that 
if the initial condition Go(x) decays too quickly at infinity, the front ends 
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up moving at the minimal velocity. It would be interesting to see whether 
our calculations could be extended to a larger class of traveling wave 
equations, in particular to cases where the minimal velocity solution is 
never accessible. (3~ 

Another possible extension of the present work would be to consider 
traveling wave equations with coefficients which vary with space, since for 
the GREM,  the ag and the c~ i are a priori arbitrary functions of i. 

APPENDIX  A 

In this Appendix, we are going to show that when one iterates (15) p 
times, the function Gp(x)  always has the form 

Gp(x)  "~ e x p ( -  e -A~(x- m) (A1) 

in the range of values of x where Gp(X) is noticeably different from zero or 
one. In other words, if D is the value of x such that 

Gp(D) = 1/e (A2) 

one expects (A1) to be valid in the whole range where ( x - D )  is of order 
one. The main goal of this Appendix is to describe a recursion method 
which allows one to compute the constant D. 

It turns out that one has to treat the two cases that we consider in 
Sections 3 and 4, the gradual freezing case A1<A2< ... <Ae and the 
simultaneous freezing case AI ~-A 2 ~ . . .  ~ Ap, in slightly different ways. 
The constants A~ are defined in (10), 

Ai= 2 (l~ c~e~ 1/2 (13) 
k a r l  

First case:  A1 < A 2 <  " ' " <Ap 
If we assume that Gg(x) has the form 

Gi(x)=exp[_e-Ap+~-~(x Dill (A4) 

we are going to see that Gi+ l(x) has a similar form and we shall relate the 
new constant Di+l  to Di. Using the recursion (44) for Ge 

Gi+ l(x)=exp I_(Nrcap_~) 1/20~p_Nif de[1 - G~(x + e)] exp(-e2/Nap i)] 

(A5) 
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one can show that, if Gi(x) is given by (A4), the integral over e is 
dominated by the range 

1 
g = - N ( a p  i log % i )1 /2  + - -  log(4rcNlog ~p_~) + q) 

- 2Ap_ i 
(A6) 

where (p is of order one. This integral over e in (A5) can be done and by 
neglecting terms of order N 1/2, one obtains that G,+~(x) has the same 
form as in (A4), 

G i + l ( x ) = e x p [ - e  A, ~(x-D,+,)] (A7) 

with the constant Di+l given by 

Di+ l = Di + N(ap_ i log %_ i ) 1 / 2  _ _  - -  
1 

log(47zNlog ~p i) 
2Ap i 

1 loges(, ,a, ,  
+ ~ p - i  Ap+~ i/_l 

So, to determine the constant D = Dp in (A1) one needs to know D1 and 
to iterate (A8) p -  1 times. The calculation of D1 can be done by repeating 
almost the same procedure which related D s to Di+~. One knows from (16) 
that Go(x) has also the form (A1): 

Go(x ) = exp( - e-~/r) (A9) 

Then, by using (A4) and (A5), one finds that 

1 
D1 = N(ap log C~p) 1/2 - (47zN log %) +/31 (A10) 

2Ap 

where/31 is given to leading order by 

1 f+o~ 
(All )  

This leads one to distinguish between two subcases: 

(i) If T <  1lAp, then the term (p2/Nap in (Al l )  can be neglected and 
(AI 1) becomes 

1 
D, = 7 log[F(1 - TAp)J (A12) 

elp 
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(ii) If T~ 1/Ap, and more precisely if 

1 - A  = 0  1 

the integral in (All )  is dominated by the range (~>0 and o = O ( v / N ) .  
This leads to 

1 ( 1/2 oo ) 
exp( - t 2 )  dQ 

Ap)/2 

{A14) 

We see that (A1), (A8), (A10), and (A12) lead to (49), whereas (A1), (AS), 
(A10), and (A14) give (61). 

Second Case: A 1  ~ - A 2 ~ -  �9 �9 �9 ~ _ A p  

We have already seen in the previous case that for lIT close to Ap, 
one had to be more careful about the range of values of (p [defined in 
(A6)] which contribute. 

When the differences A~-A~+~ are small, 

A i - A i +  1 -= O (Al5) 

the same thing happens at each iteration and one needs to keep more infor- 
mation about Gi(x). 

If we consider that the Ai are given by (65) 

A,  = A + z j , ~  (AI6) 

we have to replace (A4) by 

(A17  G,(x)=exp[-F,\ x~ ~ j 

Since F~(0) has no reason to remain equal to one, D i is no longer the value 
of x where G,(x) equals l/e, but is some value x where G,(x) is noticeably 
different from one and zero. As in the previous case, we use recursion (A5) 
to relate D, and Fi to Di+ 1 and f)+ 1. For large N one obtains 

Di+ 1 = D~ + N(ap_~ log %_ i) 1/2 (A18) 

1 fo~ [ (u--t)2+ze_e(t--u)] (AI9) Fi+ ,(t) = (~ap-_i)j!2 du Fi(u) exp ap_e 
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So, to calculate G p ( x ) ,  o n e  needs to know D1 and Fl( t )  and to iterate 
(A18) and (A19). Then the constant D in (A1) will be given by 

1 
D = Dp + ~ log Fp(O) (A20) 

As in the previous case, one needs to distinguish between two subcases to 
calculate Fl(t). 

(i) If A < 1/T, from (A5) and the initial condition 

one gets that 

Go(x) = exp( -  e x/T) (A21) 

D 1 = N(ap log ~p)l/2 (A22) 

and by making the change of variable 

e = - N ( a p  log C~p) 1/2 - ( x -  D1) + q~ (A23) 

in (A5), we see that 

G~(x) = exp - e x p [ - A p ( x -  DI)] (~Nap)i/2 

J 

x {1--exp I--exp ( - -  ~ ) ] }  1 (A24) 

If the temperature T is noticeably lower than 1/A, i.e., if 1 / T -  A ~> N 1/2, 
one can simplify (A24) and show Gl(X) has the form (A17) with D1 given 
by (A22) and F~ given by 

1 ( t  2 
- - - - - - Z p t  F ( 1 - - A p T )  (A25) Fl(t ) = Ap(~zNap)l/2exp 

Then, using (A18), (A19), (A22), and (A25), one easily obtains the results 
(57)-(59). 

(ii) When A ~_ l I T  the calculation remains identical up to (A24). 
Then if one defines Zp + 1 by 

1 
- = A + zp + 1 N -  1/2 (A26) 
T 
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one can show that the integral in (A24) is dominated by the range where 
(p is of order , , ~ .  Therefore, one obtains 

1 d~, exp - -  - - " ~  - -  Zp+l@ (A27) Fl(t)- (7~ap)l/~ ap ap ap 

Then, using (A18), (A19), (A22), and (A27), one arrives at (67)-(69). 

APPENDIX  B 

In this Appendix we present the result of a numerical simulation to 
estimate the constants C 1 and C2 in (74) and (79) and we derive bounds 
on the integrals JI(P- 1) and J2(P) defined in (73) and (78). 

The integrals Y~(p-1) and J2(P) are given by 

~v dl//l f ~ 1 7 6  dlP2 ~176 d~p  1 
Y l ( P - 1 ) = ~  o x ~ d o  x ~ ' " ~ o  x/~ 

x e x p [ -  2 I / / 1 - - ( 0 2 - - 0 1 )  2 . . . .  (Op__ l - - ( Jp  2 ) 2 - - ~ 2  i ]  

and 

(B1) 

0o dO 1 oo d~12 oo d~y p 

x e x p [ -  2 ... -0p ,)=] (B2) 

These integrals can be interpreted in the following way. Consider a 
Brownian particle in one dimension, which starts at time t = 0 at x = 0 and 
returns to x = 0 at time t - -p .  Then Y~(p-1) is the probability that the 
position x(t) of this Brownian particle will take a positive value at all 
integer times 1 ~ t ~ p - 1 .  The interpretation of Y2(P) is even simpler. 
Y2(P) is the probability that the position of a Brownian particle starting at 
x = 0 at time t = 0 will be positive at all integer times 1 ~< t ~< p. 

With these interpretations it is easy to perform a numerical simulation 
of these integrals. The results obtained by estimating Y~(p- 1) and YdP) in 
a Monte Carlo simulation of 5 x 107 Brownian particles for 1 ~< p ~< 400 are 
shown in Figs. 3a and 3b. The results clearly indicate that for large p 

Yl(p - 1) ~_ G (B3) p3/2 

J2(p) ~- C~2 (B4) 
U 
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Fig. 3. (a) The result of a Monte Carlo calculation of the product p3/2y~(p_ 1) versus p, 
where the integral JI(P-1) is defined in (B1). The statistics become worse as p increases 
because the number  of surviving Brownian particles decreases with p. This leads to the 
estimate (B5). (b) As in part (a), for the product pt/2Y2(p) leading to the estimate (B6). The 
statistics are better because in this case all particles on the positive axis contribute, whereas 
in the case of part (a) only those close enough to 0 contribute. 
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with 

C~ = 1.00 • 0.05 (B5) 

C2 = 0.56 • (B6) 

We were not able to find an analytic expression for the constants C~ and 
C2. However, we can prove that the power law dependences, (B3) and 
(B4), are indeed correct (notice that it is only these power laws which are 
used in Section 5), by obtaining the following bounds for large p: 

1 <  2A +A2 x/-~ 
0.318 - ~  p3/ZYl( p -- 1) < ~-- 2.36 (B7) 

~z 2 x/-~ (1 _ e A2) 
1 A 

0.318 ~- - < pl/ZYg(p) < ~- 0.977 (B8) 

for any constant A such that 

A ~> (8/7@/2 (B9) 

To obtain these bounds, it is convenient to introduce the function Op(X), 
defined by the following recursion: 

with 

Clearly one has 

dt 
~P+l(X)=fo 7 e (x-t?Op(t) 

- - x  2 
e 

(Bm) 

(B l l )  

J I ( P -  1) ,~2 = e " ~bp_z(X) dx (B12) 

and 

Y2(p) = fo  Op- l(x) dx (B13) 

Therefore, to obtain J I (P- l )  and J2(P) for large p one just needs to 
�9 calculate the behavior of Op(X). 

We were unable to find an explicit analytic expression for ~p(X) valid 
for large p. However, one can obtain bounds on Op(x). It turns out that one 
can prove that, for all positive integers p, 

Lp(X) <~ @(x) <.% Up(x) (B14) 
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where 

and 

09 e _ y 2  [e (x - y?/p _ e - (x + Y)a/Pl 
Lp(x)= fo (ms) 

U (x) I_e-A~L [rc(p+l)] '/2 J 
(B16) 

for any constant A satisfying (Bg). The proof of (B14) can be done by 
recursion. One first proves that (B14) is true for p = 0 or p = 1. Then one 
shows that if (B14) is satisfied for p, it remains true for p + 1. The first step 
(p = 0  for the upper bound and p =  1 for the lower bound) is very easy. 
One can easily check that for x~>0 [see (Bl l ) ,  (B15), and (B16)] 

L~(x) <~ r and Co(X) < Uo(x) (B17) 

Then one needs to show that (B14) remains true on recursion. For the 
lower bound it is easy, since one can check that Lp(X), given by (B15), 
satisfies the following recursion: 

Lp(x)= fo  dt Lp_ ~(t) [ e-(x n2~ e (~+n2]j (B18) 

Then, by comparing (BI0) and (B18), it is clear that if Ll(x)<~ r [see 
(B17)], this inequality remains satisfied for all p. The fact that Lp(X) gives 
a lower bound on Cp(X) can be understood without any calculation. Cp(X) 
is the probability that a Brownian particle, in one dimension, which starts 
at time t = 0  at x = 0 ,  will reach the point x at time t = p  with the con- 
straint that its displacement must be positive at all integer times 1 ~< t ~< p. 
The Lp(x) is the same probability with a different constraint: the particle 
has to have a positive displacement at all real times 0 < t ~< p. Clearly this 
latter constraint is stronger and therefore Lp(x)<~ Cp(x). 

Let us now turn to the derivation of the upper bound. The linear 
operator (B10) transforms a positive function into a positive function. If 
one chooses the difference Up(x)-fbp(X) as a positive function, one knows 
that the transformation of Up(x) by the linear operator (B10) will be an 
upper bound on Cp+~(x). Therefore, to prove that Up+a(x) is an upper 
bound on Cp+ l(x), it is sufficient to show that 

e - ( x  - 0 2 

fo dt U p ( x ) ~ < ~  U,+l(x) (B19) 
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By rewriting Up+ l(x), given by (B16), as 

e - (x-  t)2 
Up+1(x) = f +~ at up(t)  _ 03 ~ (B20) 

we see that to prove (B19) one only needs to show that 

0 e - (x - 02 /, 
J at G(O , f i  >1o (BZt) 

- - 0 3  

To avoid too long a discussion, let us limit our proof of (B21) to the main 
steps. First, by separating the integral over t in (B21) into two parts 
( - ~  <~t<~ - A / 2 )  and ( - A / 2 < ~ t ~ O ) ,  one can show that 

Ke - x2- A x 
Bp(x) >t (B22) 

[-7c(p + 1)3 1/2 (1 - - e  -Az) 

where 

fo K =  d t e - t 2 ( e - & ( P + t l - e  -('-~)2/(p+t~) (B23) 

So, it only remains to prove that the constant K in (B23) is positive if A 
satisfies (B9). One can easily demonstrate that (B23) is equivalent to 

Ke A2/(p+2) 2(p+2)1/2 (e A2/(p+2) 1) 2 ~ A/[(p+I)(p+2)]I/2 
-- -- -- due  ~2 

[-Tc(p "~ l )3 1/2 ~ ~0 

(B24) 

The right-hand side of (B24) is certainly larger than 

A 2 2A 
p + 2  [ ~ ( p +  1)(p+2)]1/2 (B25) 

which is positive for all p ~> 0 if 

A ~> (B26) 

The condition (B26) is therefore a sufficient condition for the upper bound 
(B14) to be valid for all integer p ~> 0. 

Having established (B14), it is easy to obtain the bounds (B7) and 
(B8) from the expressions (B12), (B13), (B15), and (B16). 
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